Partitioning instead of Clustering: An alternative approach
for mining structured content in folksonomies

Bernhard Waltl
Technische Universitat Minchen
waltlo@in.tum.de

ABSTRACT

We present an alternative approach to offer a more struc-
tured way of navigating through folksonomies where user
provided resource objects are assigned freely-chosen text la-
bels (i.e. tags). The main idea behind this new method is to
algorithmically determine different facets to enable faceted
browsing. By offering facets, the resource collection can be
accessed and filtered in a structured way. In contrast to the
existing clustering concepts that primarily work with the
similarity of tags, the partitioning approach mines facets,
whereas the relationship between tags of one facet is that
those tags do not appear on the same resource objects. The
extensions of tags, i.e. the set of resources having the tag as-
signed, within the same facet are mutual exclusive, therefore
we get disjoint partitions of the resource space. To deter-
mine those partitioning facets an algorithmic approach using
linear programming was developed. The algorithm was ap-
plied to data samples from a real world folksonomy, namely
the photo sharing platform Flickr. Although real world folk-
sonomies are very noisy and different users with different vo-
cabularies intensify this noisiness, representative and mean-
ingful facets could be determined by the algorithm.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval|: Content Anal-
ysis and Indexing; H.4 [Information Systems Applica-
tions|: Miscellaneous; H.5.4 [Information Interfaces And
Presentation]: Hypertext / Hypermedia, Navigation

General Terms
Folksonomies, facets, partitioning, navigation

Keywords

Social tagging, facet creation, faceted browsing, algorithm

1. INTRODUCTION

Many collaborative information systems use tags, i.e., freely-
chosen text labels, as a means for categorizing contents cre-
ated and uploaded by independent users (e.g. photos, book-
marks, music, podcasts) in order to make these contents ac-
cessible. Where hierarchical organization schemes fail, tags
offer a way to navigate, search and browse through these
collections of resources. The entire set of tag assignments in
such a collection is called a folksonomy. These rather chaotic
organization schemes exhibit no clear structure since there
are no constraints in the usage of tags and users have dif-
ferent vocabularies. In combination with the fact that the
number of resources can be very high this implies, that the
utility of the system suffers if the user is not provided addi-
tional aid in analyzing a set of resources.

Information exploration using grouping is a very common
method to design a user interface that supports informa-
tion seekers. According to Hearst two methods are popular:
clustering and faceted categorization [9].

The usual approach is to analyze the number of co-occurren-
ces of tags and generate clusters of tags being frequently
used together. Several algorithms for this purpose are de-
scribed in literature, sometimes including specific user in-
terfaces displaying the results to the user [2, 18, 20, 23, 25].
Those algorithms focus on determining strong relationships
between resources based on the tags that they share with
each other.

One of the big issues finding clustered tag sets is deciding
whether co-occurrence count is significant or not [2]. Flickr
provides so called Flick clusters, that group related tags to-
gether into several cluster. Looking at the clustering results
for the word "Summer”, four clusters are proposed. Each
cluster is represented by a few tags, that describe the re-
sources of those clusters. Looking closer to those tags, it
can be seen that the clusters do have relations within but
they do also have relations to photos in some other cluster.
For example, the text labels cloud and the plural form clouds
are provided in different clusters but they obviously have a
very strong relation with each other. The fact that different
clusters are likely to share some resource objects holds for
many examples that are generated by the Flickr approach
of clustering (e.g. rain, animals). Whereas other clustering
examples work better. Considering the provided clusters for

http:/ /www.flickr.com/photos/tags/summer /clusters/,
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the tag "Jaguar’?, the suggested clusters represent the ani-
mal and the car brand in a meaningful way. The semantical
coherence within a cluster is very high, whereas the semantic
correlation to the other clusters is hardly given. Although
Flickr clusters use even more parameters than occurrence
(e.g. pageviews, comments left by users, etc. [2]), many of
the provided clusters still lack consistency and intuitivity.
Hearst furthermore showed that an additional disadvantage
of clustering is the conflation of many dimensions simultane-
ously. Users prefer understandable hierarchies at a uniform
level of granularity [9].

The alternative way to explore through folksonomies is us-
ing faceted categorization. Faceted browsing is a suitable
method to provide exploratory search within a folksonomy.
The presence of multiple facets enables a more flexible and
enhanced search. To offer multidimensional faceted brows-
ing, the objects of interests have to be classified along with
several dimensions of metadata [14]. An online interface
that exemplary shows the support through faceted catego-
rization by providing useful different facets, is the Flamenco
project[5]. For the example database of Nobel Prize win-
ners many different facets such as gender, country, affilia-
tion, year and prize are provided.

Section 2 reviews the studies of related work. In Section
3 a more detailed view on the idea of deriving facets from
the folksonomy as well as on the implementation is given.
Furthermore some limitations are briefly discussed. Section
4 presents the experimental results of the algorithm. Finally
a conclusion is made in Section 5.

2. RELATED WORK

Discover latent structure from text-labeled objects is a well
studied problem and many different methods were developed
and exhaustively investigated in experimental setups. How-
ever, most of the approaches assume hierarchical structure
of the content that is processed via similarity relation or us-
ing a lexical database such as WordNet ? [6, 16, 21, 22]. If
no hierarchy is created, the algorithms cluster the objects
regarding to their similarity, which is mostly detected using
co-occurrence count of the tags that they share [3, 4, 8, 13,
18].

Li et al. suggested a method for semantic browsing by con-
sidering similarity between tags [13]. They observed that
the semantic relationship between two tags is represented
through their co-occurrence. Likewise, Hassan-Montero and
Herrero-Solana interpret tag co-occurrence as an indicator
of semantic similarity between tags [8]. Based on the work of
Heymann and Garcia-Molina [11], Benz et al. proposed an
algorithm to derive a semantic structure from folksonomies
[3]. Similarity thereby is also measured and determined
through the co-occurrence count.

Schmitz et al. proposed a further approach, based on asso-
ciation rule mining, to retrieve hierarchical structures from
folksonomies [19]. Those rules can be used to determine sub-

2http:/ /www.flickr.com/photos/tags/jaguar/clusters/, ac-
cessed August 26th, 2012

3http://wordnet.princeton.edu/, accessed August 26th,
2012

sumption relations or to recognize pairs of tags which occur
together very frequently.

Text labels are organized within a facet in such a way, that
they reflect the concepts relevant to a domain. Each facet
is composed of an orthogonal set of categories. The main
problem by defining such a facet is to specify the semantic
relation between meaningful labels and what kind of cate-
gory the facet describes. To solve this problem, the creation
is done manually [9] or by building a semantic hierarchy us-
ing a lexical database like WordNet[6, 21, 22]. Providing
meaningful facets without manual assigned categories and
avoiding the construction of semantic relationships between
tags with a lexical database is quite challenging [7].

Lin et al. presented an interface that enables exploratory
search called "ImageSieve” [14]. They performed a user
study demonstrating that faceted search based systems can
help users to explore large collections and find relevant in-
formation more effectively. The clustering is done by seman-
tic similarity using the Scatter/Gather method, introduced
by Hearst and Pederson [10], to group objects in topically-
coherent clusters.

In this paper, we introduce an alternative approach to mine
patterns within a folksonomy and to enhance the usability of
an exploratory search by providing facets that neither cluster
objects nor assume hierarchical relationships between tags.

3. PARTITIONING ALGORITHM

Folksonomies can be represented by tripartite graphs since
the structure of those networks are composed of three kinds
of nodes, i. e. users, resources and tags [12]. In our ap-
proach, as in most other methods, we make no distinction
between different users and therefore we consider the net-
work as a bipartite graph consisting of a set of resources
and a set of tags. A partition of a set is a division into sub-
sets. Those subsets are mutually exclusive and collectively
exhaustive.

As mentioned above the idea behind faceted search is to
provide tags, that are semantically orthogonal within a di-
mension. For example if we consider a color facet, we ex-
pect "red”, “green”, "blue”, etc. to be represented in this
facet. The same idea holds for many different facets such as
time periods, spatial information, etc. However, the main
problem is to extract those facets dynamically from the folk-
sonomy. The goal of our algorithm is to partition the set of
resources into non-intersecting sets with regard to their tags.
The algorithm finds sets of tags of which the extensions are
mutually exclusive. No tag of a facet shares a resource with
another tag of the same facet.

To illustrate this, Figure 1 shows an example of a possible
small folksonomy. The example consists of twelve resources
R1, ..., R12 and seven different tags ¢I, ..., t7. An opti-
mal partitioning is easy to spot. Since tI, t2, t3 cover the
whole set of resources and furthermore are mutually exclu-
sive regarding to their resources they seem to be semanti-
cally orthogonal within the same dimension. While the tags
t4, t5, t6, t7 do not cover all resources and since t5 and
t6 share a resource, namely R12, they are not supposed to
represent a common category. The same argument holds
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Figure 1: Tag - Resource relationship

for all other combinations of tags. However, searching for
similarities would lead, depending on the clustering strat-
egy, most likely to one clusters. Since all tags share many
resource objects with some other tag, many algorithms that
seek for co-occurrence would detect a strong similarity re-
lationship between those tags. To get a more illustrative
example lets assume that the resources are pictures and t7,
t2, t3 contain time information, e.g. 2010, 2011 and 2012.
Those would belong to the same facet since they are rep-
resentatives of the same category. It is not common that a
picture is tagged with more than one text label representing
the time information.

Figure 1 is an idealized example of a possible dataset. The
existence of tags like t1, t2, t3, that have completely dis-
joint resource sets and additionally cover the whole resources
space cannot be assumed in general, especially not in folk-
sonomies with thousands of users. Therefore the algorithm
tries to extract facets even on subsets of the resources within
a folksonomy and can be configured to allow an overlap be-
tween the resource sets of different tags. The partitions get
fuzzy, i. e. they are no longer necessarily mutually exclusive,
and the union of them won’t represent the whole folksonomy.
Neglecting the two constraints, namely mutually exclusive-
ness and collectively exhaustiveness, can be accepted as they
are very restrictive and in general not lead to meaningful re-
sults in noisy real-world folksonomies.

3.1 Implementation as a Linear Program

In order to determine the tags to generate those partitioning
facets, an algorithmic way to determine those from the folk-
sonomy is necessary. All the information, that can be used
comes from the folksonomy itself: the tags, the resources
and the relationship between those objects, i.e. labelling.
The output should be a set of tags that are within a facet
and therefore represent different categories of the same di-
mension. Since this can be represented as a binary value,
we need a vector x that holds a value for each possible tag
that indicates whether it is in the facet or not.

1: The corresponding tag is in the facet.
0: The corresponding tag is not the facet.

Furthermore, the tag selection has to satisfy a set of con-
straints, those result from the restriction that some tag must
not appear along with some other tag within the same facet.
To solve a problem of this kind liner programming provides
a useful and well studied method. It is a common technique
to solve optimization problems in various fields of study. As
we will later see, it also allows us to assign a value to each

tag, what gives us an opportunity to map the structure of
the folksonomy better to the constraints.

Linear programming is a method to maximize a given lin-
ear function, subject to certain linear inequality constraints.
The canonical form of a linear program is as follows:

T

max c¢

st. Ax <b
x>0

x represents the vector of variables, those are going to be
determined by the solver. ¢ and b are vectors consisting of
known parameters. A is a matrix of coefficients. The expres-
sion, that is going to be maximized is called the objective
function, which is ¢fz. The linear inequalities are defined
by Az <b.

To solve the problem of generating facets with the optimiza-
tion method of linear programming, the problem has to be
formulated in an adequate way. The only information, that
the algorithm uses is from the folksonomy, therefore all coef-
ficients and parameters are extracted from it. First of all, the
algorithm creates an extended adjacency matrix that repre-
sents the connection between two tags. A tag ¢ is connected
to some other tag t’, if there is a resource that is labeled with
both tags t and ¢’. The adjacency matrix stores the number
of resources that the two tags share with each other. The
algorithm continues to determine the values of the objective
function, namely ¢, which we call the cost function, since
it represents the "value” of a tag. Different tag values lead
to different results, which we will discuss in the next sec-
tion. By default the value of a tag is defined by its total
occurrence count within the folksonomy. This information
is already available, since it is represented by the elements
of the main diagonal of the adjacency matrix.

The next step is formulating the linear inequalities. There
are two informations needed: the matrix A that represents
the coefficients and the vector b that represents the right side
of the inequalities. The algorithm iterates through all pairs
of tags and checks if they have resources that they share
with each other. This information is stored in the adjacency
matrix of the folksonomy. If there is a resource, that holds
both text-labels, then they must not appear within the same
facet because they most likely do not belong to the same di-
mension which is the basic idea of the determination process
and therefore a requirement for tags to appear in the same
facet. To avoid that this two tags end up in the result a
proper constraint has to be formulated. A row is added to
matrix A that represents this constraint. An example of a
row in the matrix:

0O .. 010 010 .. 0
This gives linear inequality constraints of the following form:
Zoy ..y T € {0,1} :
Oxxo+...+1xx;+...+1xz;+...+0xz, <1
had SN——

if'htag j”"tag

The position of the 1-elements in the row are according to
the tags, that are not allowed to appear simultaneously due



partitioning restrictions. A possible row that conforms to
the example in Figure 1 would place the 1-elements in the
first and in the fourth position. This states out, that Tag
t1 and t2 cannot be part of a result of the facet extraction
algorithm at the same time, since they both share resources.
To complete the linear program every element of the vector b
needs to be set to one, to ensure that the constraints defined
exclude the co-appearance of two tags.

3.2 Adoption and Improvements
Overlapping Tags

Determining structure in folksonomies using tags can be
very challenging through their noisiness and ambiguity [17].
Many times two different tags appear on the same resource,
though they cover the same dimensional categories and should
therefore appear in the same facet.

t2
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Figure 2: Overlapping tags

Figure 2 illustrates the problem. The example shows in gen-
eral the same relationship as in Figure 1 but the tag ¢3 is
now labeled on an additional resource namely RS8. Although
a good facet would still be t1, t2, t3. However, the first naive
approach would not find those overlapping tags, because of
the restrictive constraints, that do not allow for any inter-
sections between resources of tags. So we extended the al-
gorithm by an additional parameter called allowedOverlap.
This parameter is a percentage and considered while creat-
ing the constraints. If the count of intersecting resources
of two tags is less than the number of allowedOverlap per
cent of resources of the tag with less occurrences, then no
constraint is generated since this overlap is accepted.

Minimum Appearance

The idea behind collaborative tagging systems is to allow
users to assign a resource without any constraints or vocab-
ularies that prescribe which words to use or how to spell
them. As a consequence to this unsupervised annotating
concept, a huge amount of different tags appear in those
tagging systems. The frequency distribution of tags in real-
world folksonomies follow the so called power law distribu-
tion. This means that there is a large number of occurrences
in the head and a very low number of tag occurrences in the
long tail [13, 20, 24]. Figure 3 shows quantitatively the or-
dered tag distribution trend for an excerpt dataset of the
Flickr platform. The dataset represents the Flickr group
"Munich, Germany” and holds more than 30000 different
photos.

"Munich, Germany”, http://www.flickr.com/groups/munich/,

accessed on October 11th, 2012
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Figure 3: A qualitative overview of tag appearances
from a Flickr group in decreasing order

Tags that appear at a very low frequency are most likely
tags that belong to a single user or to a small group of users
and are not very expressive for users that do not belong to
this group. However, those tags are very distinguishing to
most of the other tags and therefore they would represent
a small set of resources without intersecting with other text
labels. That is way those tags are very likely to turn up in
the partitioning facet although they are not very relevant to
a user that does not have any knowledge of the folksonomy
and furthermore do not have a relationship to the very low
frequency tags from another user.

To prevent this low frequency tags to appear in the facet,
the algorithm was extended by a parameter called minimum
appearance. The meaning is straightforward. Any tag that
is considered by the algorithm to be in the facet needs to
occur at least as often as the value of minimum appearance
demands. Otherwise the algorithm ignores this tag. Beside
more meaningful facets, this improvement leads to better
performance since less tags need to be considered.

Exclude Tags

Rather than offering only one partitioning facet, that rep-
resents one semantical dimension, it should be possible to
offer more than one different facet to provide a variety of
dimensions, enhancing the possibility of accessing the folk-
sonomy. It can be expected, that there are different dimen-
sions depending on the subject of the analyzed folksonomy,
e.g. time, spatial, ... . In order to find all these different
facet types the algorithm requires several iterations. If a
facet was determined all tags within would be excluded in
the next repetition of the algorithm, therefore it is necessary
to parametrize the algorithm to specify the tags that are not
going to be considered.

3.3 The Cost Function

An additional improvement addresses the cost function. The
basic idea of the linear program is to maximize (respectively,
minimize) the product of cTx. Since the vector x is variable,
it represents determined tags that belong to a facet, and the
constraints are fixed, the cost function has huge influence
on the outcome of the algorithm. The cost function assigns
a value to each tag. There are several different ways to
quantify the value of a tag.

The cost function assigns a positive value to each tag of a
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Figure 4: A qualitative comparison between the different cost functions, namely (a) Number of Occurrences
(b) Uniformly (c) Capped (d) Logistic (e) Logistic with Cutoff. The x-axis hold the number of occurrences

of a tag and the y-axis represents the value of this tag.

given set of tags T:
C:t—R" with teT

Furthermore, let us define the occurrence count of a tag
within a folksonomy as

occ:t — R with ¢~ count(t)

Number of Occurrences

The most obvious approach mapping a value to a tag is
assigning the counted number of occurrences. For this pur-
pose it is necessary to determine the appearances of a tag
in the folksonomy without any further processing, i.e. no
additional mathematical method is required. This way of
determining the value of a tag is quite simple and reflects
the significance of tags since more important tags usually
appear more often than less important tags. The resulting
cost function is defined as follows:

Cloce(t) = occ(t)

Nevertheless there is an issue regarding the usage of this
function. Since a few tags do have a very high occurrence
(see figure 3), those are most likely to be in a facet because
of the value maximization character of the linear program.
Other tags, that appear less frequently throughout the folk-
sonomy and share some resources with the high-valuable tag
are no longer considered to be in the same facet because of
the mutually exclusiveness of the tag-resource sets. Using
this function often leads to facets with a very common tag
beside a few tags with very low frequency that do not have
any semantic relationship to each other.

Uniformly

Another way to assign costs to the tags is uniformly. In
this case, every tag has the same value, i.e. one. This as-
signment neglects the structure of the tagging occurrence
within the folksonomy, since the tags with the highest fre-
quency are treated as valuable as those with low frequency.
The resulting cost function is defined as follows:

Cuni(t) =1

The main advantage, in contrast to the cost function that
uses the number of occurrences, is that tags with very high
occurrence do not prevent other tags, with lower frequency,

to be considered by the algorithm. Since every tag is consid-
ered to be equal, the result accords more to the structure and
relationships between distinct tags and their corresponding
resources rather than on the frequency of occurrence. How-
ever, from this characteristic also arises the main disadvan-
tage. The high frequency tags, are most likely the most
popular ones. Facets created with this cost function may
cover one semantical dimension but this dimension can be
very specific, since it allows for very low frequent appearing
tags to represent a facet. It cannot be assured that the se-
mantic of such a facet can really provide a more structured
access since the semantic issue of the facet may not reveals
to the exploring user.

Capped

To avoid the problem that arises with the use of the appear-
ance count as cost function and additionally not to loose
the structure of the tagging occurrence, the algorithm can
be configured to work with a further cost function we called
”Capped Costs”. This function assigns every tag the num-
ber of its appearances within the folksonomy as long as it
is below a certain threshold ©. If the occurrence count of a
tag exceeds this threshold value, the value gets capped by
assigning the value of the threshold. This leads to a map-
ping where tags with low occurrence are as valuable as they
are regarding to their appearance and tags with very high
frequency won’t get too valuable since the absolute value is
capped. The resulting cost function is defined as follows:

occ(t), if occ(t) < ©

0 c R
o, otherwise

Ccapped (t) = {

As a consequence, very popular tags are not going to prevent
other tags to be in the facet, since the cost maximization of
the linear program does not eagerly try to use this popular
tag. This is the main advantage of this cost function. How-
ever, it is challenging to find the optimal threshold value
since it depends very much on the folksonomy itself. If the
threshold is too low, the cost function converges to the uni-
form distribution of tag values and on the other hand if it
is too high, it converges to the cost function that represents
the number of occurrences.

Logistic
At an initial stage, the growth rate of the curve is very low
but is exponentially increasing until saturation is reached.



From the point of saturation the growth rate is decreasing
till it stops. Curves with such an ”S” shape are called sigmoid
or logistics functions® and are defined by the exponential
function:
1
14e-t

Therefore the resulting cost functions is defined by the for-
mula:

_ occ(t)
= 11 e(—ar(oec—P)

Clag (t)

A cost function with such a shape allows eliminating tags
with low frequency whereas the value of high occurring tags
is almost the number of their occurrence. Tags, that do not
appear very often but also do not appear very rarely will
still be considered, although their value, regarding to their
occurrence count, is decreased by the cost function. The
decreasing coefficient is determined by the logistic function
and therefore a real value between zero, for low frequency
tags, and one, for high occurring tags.

The shape of function C' is influenced by two parameters
a, 3. Whereas 8 determines the point of inflection and «
determines the rate at which the logistic function rises.

Although the logistic function provides a smooth transition
from zero to the number of occurrences of a tag, the deter-
mination of the parameters «, g is challenging.

Logistic with Cutoff

A further development of the logistic cost function is the so
called cutoff functionality. The basic idea is quite simple.
The value assignment to tags is the same as in the logistic
function but in this case, high occurring tags are going to
get decreased values. If the occurrence of a tag value exceeds
a threshold, the value will smoothly decrease, regarding to
the difference to the threshold. A high difference will reduce
the value down to zero. The threshold is a parameter of the
algorithm and the attenuation is determined by a second lo-
gistic function that represents the suppression of frequently
occurring tags. Therefore additional parameters o/, ', that
are used to determine the shape of the second logistic func-
tion, need to be set. The resulting cost functions is defined
by the formula:

_ occ(t) _ occ(t)
= 11 e(—or(occ®—B) 14 e(—al*(occ(®)—B)

C’lngC’utoﬁc (t)

The number of parameters to be defined increases and there-
fore the complexity of the cost function. This may be a dis-
advantage of this function. In general this method provides
the possibility to define some kind of a "frequency window”
that specifies what tags are going to be considered by the
algorithm since an upper and a lower bound for occurrences
can be specified using two logistic functions.

3.4 Limitations
Although the algorithm is simple and allows many improve-
ments and adjustments it has some limitations.

®http://en.wikipedia.org/wiki/Logistic_function, accessed
August 30th, 2012

Titling the Facets

The algorithm determines tags, that have a certain relation-
ship to each other: they are not or only rarely assigned on
the same resource. Those tags are supposed to describe dif-
ferent categories of the same semantical facet, e.g. "red”,
”green”, "blue”. The semantical subject described by the
facet cannot be detected by the algorithm. Therefore it is
not possible to assign a meaningful name to the facet. To
solve this problem it is either possible to consult a lexical
database or to assume and determine a hierarchical struc-
ture within the folksonomy and find a tag subsuming those
tags in the facet. Anyway, both mentioned approaches are
not implemented in the algorithm as is.

Performance

Depending on the size of the analyzed folksonomy, formulat-
ing the linear program, i.e. creating constraints and calcu-
lating tag values, is usually negligibly fast, solving, in gen-
eral, is not. This restricts the usage of the algorithm in web
applications. Providing instantly calculated facets can only
be achieved on small folksonomies with a low number of re-
sources and tags. A reliable estimation about computing
time cannot be given, since it depends on many different
factors, i.e. the number of resources, tags, constraints, et
cetera.

Cost Function

Although the cost function can be varied in many different
ways, it is still limited. The cost functions calculate a value
for every tag but do not consider other tags that are deter-
mined to be in the facet. This calculation of the values is
done independently of those other tags. E.g. if a pair of
two tags t1 and t2 appear together in the same facet it is
not possible to reward this combination with an additional
value or to specify a negative value as a deduction.

4. EXPERIMENTAL RESULT

In the following experimental setup we extracted facets from
real-world folksonomies using the partitioning algorithm. We
chose Flickr as a photo sharing platform that allows users
to upload and tag personal photos. Due to it’s popularity
it provides many photos and tags are an important part of
the system and represent a primary navigational tool [15].

4.1 Dataset
For the evaluation we have selected Flickr photos through
the Flickr API. The photos are extracted from the public
Flickr group "Munich, Germany”®. To avoid resources with
very few tags, we only imported those photos with more
than three tags.

Number of Photos 31711
Number of distinct Tags | 30860
Number of Users 3728

Table 1: Basic information from the imported Flickr
Group "Munich, Germany”

5"Munich, Germany”, http://www.flickr.com/groups/munich/,
accessed on October 11th, 2012



4.2 Experimental Setup

The import of the photos as well as the implementation of
the algorithm was done in Tricia’, an open-source Java plat-
form used to implement enterprise web information systems
but also social software solutions including wikis, blogs, file
shares and social networks [1].

Furthermore, Tricia offers a way to navigate and to inter-
actively explore the folksonomy using a web browser. We
prototypical implemented the algorithm and offered the par-
titioning facets as the navigational tool. Additionally to the
tags the number of resources on which they are labeled on
is displayed in brackets beside the tag (see Figure 5). This
information is useful because it supports the navigation pro-
cess by providing more information about the qualitative
structure of the folksonomy.

Using this implementation, we navigated through the folk-
sonomy to search for meaningful partitioning facets. Since
the algorithm can be applied to subsets of the folksonomy,
we searched for subsets, that are consistently tagged and
that fulfill the requirement of mutual exclusion regarding to
their resources. During this task, we found meaningful and
representative facets on different subsets.

4.3 Facets

If subsets of the folksonomy are considered the partition-
ing algorithm is able to extract consistent and meaningful
facets, that represent different aspects of the same dimen-
sion. Figure 5 shows two facets generated for a subset of
the Flickr photos. The facet (a) is extracted from the pho-
tos, that are all labeled with the tag Canon”, whereas the
photos from facet (b) share the label "Nikon”. Both are
very common camera manufacturer with a variety of differ-
ent models. Using those sets of photos the algorithm was
able to determine significant and representative facets. The
algorithm extracted the models from Canon and Nikon.

(a) (b)

w Partitioning Facet w Partitioning Facet

1000d (37)  d100 (26)
300d (57)  d200 (39)
350d (50)  d300 (69)
400d (120)  d40 (84)
40d (37)  d50 (83)
450d (44)  d5000 (45)
500d (135)  d700 (97)
550d (87)  d70s (33)
Sdmarkii (108)  dso (97)
7d (60)  d90 (129)
ixus (39) film (35)
(41)  instantfave (122)

powershot (85) (23)

Figure 5: Two different facets both using the
cost function ”Logistic with Cutoff” (a) created on
the subset ”Canon” and (b) created on the subset
”Nikon”.

"Tricia”, infoAsset AG, http://www.infoasset.de, accessed
on October 19th, 2012

Within facet (a) there are two tags that are not related
to "Canon”, namely “robert and "moment”, whereas in (b)
the tags "film”, "instantfave” and ”soninka” are not related
to the camera models of "Nikon”. Those wrongly detected
tags arise, again, from the circumstance that real-world folk-
sonomies are noisy and differ in the tagging behavior of
users.

A further example of a meaningful partitioning facet is shown
in Figure 6. The facet is generated from the Flickr photos,
that are commonly tagged with the label "Museum” and
therefore hold many different museums of Munich. Again,
the algorithm is able to find very representative tags, that re-
fer to the museum photos within the Flickr Group "Munich,
Germany”. Almost all tags refer to museum in Munich ex-
cept the tag "Museée”, which generally describes photos from
different museums, that are not tagged with any particular
museum.

w Partitioning Facet

altepinakothek (38)
o
bmw (148)
brandhorst (137)
deutsches (67)
glyptothek (39)
0
neuepinakothek (18)
residenz (17)
theatermuseum (41)

Figure 6: A facet generated for the "Museum” tag,
using the cost function ”Logistic with Cutoff”.

Figure 7 shows a further facet that is based on the whole set
of photos. It uses the cost function "Logistic with Cutoff”
but in contrast to the facets shown in Figure 5 and 6, it al-
lows a small overlap of the tags. As mentioned, this overlap
affects the extensions of a tag, i.e., photos labeled with the
tag. The dilution, that those extensions need no longer be
disjoint partitions, leads to facets with much more tags.
Although allowing overlapping extensions is a useful adap-
tion of the algorithm and leads to meaningful facets, the
threshold value of the overlap is difficult to determine. As a
result of this removed restriction the facet holds many more
different tags, that may share some resources.

Therefore, tags that belong to many distinct dimensions are
in the facet. Through their variety of dimensions they should
not appear within the same facet. The facet in Figure 7
shows date information as well. The tags representing the
years from 2006 to 2010 are discovered. Beside the date
information, tags are shown, that are not related to the
date information, e.g. ”75d”, ”allemagne”, "analog”, et cetera.
Even though 11 tags are shown in the figure, there are in
fact 38 tags within this facet.

Anyway, within these 38 tags there are more than just the
dimension that represents the date information. A ”color”
dimension and a "district” dimension are included. Even if
the threshold holds a value that allows for extracting the
date information, tags that are not related are still deter-
mined by the algorithm.
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2006 (395)
2007 (430)
2008 (391)
2009 (412)
2010 (535)
5d (359)
allemagne (370)
analog (368)
art (713)
bier (368)
black 408\

Figure 7: The first 11 tags of a partitioning facet
that was generated using all photos, with the cost
function ”Logistic with Cutoff’. Additionally, a
small overlap (10%) of the extensions of the tags
is allowed.

Many different dimensions are mixed in one single facet, be-
cause of the overlap. The usage of the combination of the
cost function and the overlap parameter is not sufficient to
determine facets that only contain facets of one dimension.

Table 2 gives an overview of the different cost functions that
were implemented. It allows a quantitative comparison of
the number of tags of the same dimension to the total num-
ber of tags that are within a facet. For instance, if we con-
sider the resulting facet for the subset of resources that are
labeled with the tag "Canon” using the cost function ”Lo-
gistic with Cutoff”, then a facet with 14 tags in total is the
result. 12 of this 14 tags are of the same dimension (see
Figure 5). The classification and counting of the tags that
share the same dimension was done manually.

w“ & o=
58 2 g
50 g e 3 o =
2E & e £ £0
g 8 =] a ) oS
= I3) ) @ 15) o &
Tag ZzZ0 P O = QB
Canon 12 4/14 4/14 1/2 12/14
Nikon 0/3 7/15 7/15 0/2 10/13
Olympus | 4/15 4/16 3/17 0/1 10/12
Museum | 0/1 3/17 3/17 0/1 8/10

Table 2: Comparison of the cost functions.

From the results in the table some conclusions can be de-
rived. First of all, there are big differences between the
results using the various cost functions. Whereas ”Logistic”
leads to very few tags within a facet, the usage of "Uni-
formly”, "Capped” and "Logistic with Cutoff” results in facets
with much more tags. This is in line with the way that those
cost functions assign values to the tags. An explanation for
this effect can be found by considering the cost functions
"Number of Occurrences” and "Logistic”. They enable very
frequent occurring tags more likely be in a facet since they
have very high values, respectively the other cost functions
do not allow for very high values (see Figure 4). It can been
seen, that if a cost function allows high values for a tag,
the determination of distinct tags of one dimension suffers.
Without a maximum value for tags as an upper bound, the

algorithm is hardly able to identify meaningful facets.
Furthermore, the table shows, that even if cost functions pre-
vent tags from being too valuable to skew the resulting facets
this does not automatically lead to representative facets. Al-
though the cost functions "Uniformly” and "Capped” have a
maximum value for tags, the facets that are determined are
in general no of one dimension. Furthermore, the tags within
those facet seemed to be a chaotic selection without a clear
structure.

Meaningful and representative facets are discovered when
the algorithm uses the cost function ”Logistic with Cutoff”.
This function excludes tags with very low frequency as well
as tags with very high occurrence. This method seems to
be the best way to determine the value of tags, since the re-
sulting facet holds the most tags of one dimension in every
of the four cases considered in Table 2.

Figure 8 is a graphical visualization of the comparison of the
cost functions. Two different diagrams are shown, whereas
(a) provides information about the precision and (b) displays
the recall of the cost functions. It can be seen, that the func-
tion "Logistic with Cutoftf” has a high precision value, what
can been derived from Table 2 also.

To calculate the recall value, the number of relevant camera
models or different museums would be necessary. Count-
ing this values is in practical terms not possible, since there
are many different tags throughout the folksonomy, whereas
each of them has to be considered and classified. Therefore
we took the determined values from the cost function "Logis-
tic with Cutoff”. This explains the recall of one for the func-
tion "Logistic with Cutoff”. The recall value confirms what
we have already seen in Table 2. The cost functions "Num-
ber of Occurrences” and "Logistic” do not lead to meaningful
and representative facets, whereas "Logistic with Cutoff” has
a high precision and discovers relevant tags, that no other
cost function was able to determine.

4.4 Summary

Although the general principle of the algorithm is simple,
meaningful and representative facets could be determined.
Many different categories of a dimension could be discov-
ered without any additional preparation of real-world folk-
sonomies. However, every facet that was determined still
lacks consistency since no dimension could be extracted purely,
i.e., without a tag that does not belong to the facet.

The cost functions have a material influence on the resulting
facets. Depending on the assignment of values to tags the
resulting facet can be very representative or totally unusable
for any further navigation or exploration.

Adapting the algorithm using the parameters mazQuverlap or
minAppearence is challenging since it is an issue, that arises
from the dataset. Again, noisiness and ambiguity of tags
within the folksonomies make it hard to determine values
that yield good partitioning facets.

S. CONCLUSION AND OUTLOOK

This paper presents an attempt to offer a more structured
way to access and navigate through folksonomies. Providing
so called partitioning facets that cover multiple categories of
a dimension can be seen as an additional aid to support users
that have no or less knowledge of a folksonomy. The set of
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Figure 8: A comparison between the cost functions regarding to (a) precision and (b) recall.

tags, that represents a facet, is algorithmically determined.
Since the relation between those tags have to satisfy cer-
tain restrictions this approach can be formulated as a linear
program.

To obtain partitioning facets, a set of photos with tag labels
from the photo sharing platform Flickr was extracted. Using
this folksonomy, facets were generated by the algorithm. Al-
though the algorithm was able to determine some very mean-
ingful and representative facets, there remain challenges that
arise from the noisiness within the folksonomy. Since users
differ in their vocabulary as well as in their tagging behav-
ior the extracted partitioning facets often lacks consistency.
This problem arises since the folksonomies are very noisy
and consist of resources from many different users with dif-
ferent vocabularies and distinct tagging behavior.

It can be assumed that this issue cannot be solved by adapt-
ing the cost functions or the parameters of the algorithm
only. Without any additional preprocessing that lowers the
noisiness this approach won’t produce results that do not
longer lack consistency. Harmonizing the tags and structur-
ing folksonomies, as introduced by Matthes et al. [16], would
decrease this noisiness and therefore represent an important
step towards better results.

Additionally more research is needed to make the approach
more applicable. Determining thresholds for the cost func-
tions as well as developing new ones may also lead to better
results.

However, this paper shows, that there are ways to automat-
ically determine facets and furthermore adds a new way to
discover a latent structure from text-labeled objects. This
may be more interesting in collaborative tagging systems,
where noisiness within Folksonomies is not as high as in
online platforms such as Flickr. Beside existing concepts
to enhance navigation and exploring, namely clustering and
hierarchical subsumption, the partitioning approach can be
an additional method to improve the accessibility of folk-
sonomies.
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